

#### **Direct Photons at RHIC**

**Photon2009 DESY/Hamburg, May 11 - 15, 2009** 

Klaus Reygers
University of Heidelberg
for the PHENIX Collaboration

## Why Direct Photons in Nucleus-Nucleus Collisions (I)?



- The hope is to create a thermalized medium that can (locally) be characterized by a temperature *T*.
- Once produced photons leave the fireball unscathed → experimental access to the temperature of the fireball

## Why Direct Photons in Nucleus-Nucleus Collisions (II)?

- Direct photon yields at low p<sub>T</sub> (< 5 GeV/c)</p>
  - Measure thermal photons
     → initial temperature of the fireball
  - Find further photon sources related to presence of the QGP (e.g. photons from jet-plasma interaction)
- Direct photon yields at high p<sub>T</sub>
  - Confirm point-like scaling for hard processes
- Direct γ hadron azimuthal correlations
  - p+p: measure fragmentation function
  - A+A:  $E_{\gamma} = E_{jet} \rightarrow$  study parton energy loss for partons with known initial energy





**Direct Photons at RHIC** 

Klaus Reygers

#### **PHENIX: Photon and Electron Detectors**



Pseudorapidity coverage :  $|\eta| < 0.35$ 

- EMCal: PbSc (6 sectors) + PbGl (2 sectors)
- PbSc:
  - Highly segmented lead scintillator sampling calorimeter
  - Module size:
     5.5 cm x 5.5 cm x 37 cm
- PbGI:
  - Highly segmented lead glass Cherenkov calorimeter
  - Module size:
     4.0 cm x 4.0 cm x 40 cm
- Ring Imaging Cherenkov Detector (RICH):
  - Electron identification (together with *Elp* matching in EMCal)
  - No signal for charged pions with p < 4.6 GeV/c</li>

### **How Do We Measure Direct Photons** in PHENIX?

#### Intermediate and high p<sub>T</sub>: Real photons with EMCal

 Statistical Subtraction (typically no isolation cut)

$$\gamma_{\text{direct}} = \gamma_{\text{inclusive}} - \gamma_{\text{decay}} \quad \text{on measured}$$

$$= (1 - \frac{\gamma_{\text{decay}} / \pi^0}{\gamma_{\text{inclusive}} / \pi^0}) \cdot \gamma_{\text{inclusive}}$$



#### ■ Low p<sub>T</sub>:

Virtual photons ( $\gamma^* \rightarrow e^+e^-$ ) with RICH (internal conversion)

$$\frac{\gamma_{\rm direct}}{\gamma_{\rm inclusive}} = \frac{\gamma_{\rm direct}^*}{\gamma_{\rm inclusive}^*} \bigg|_{m_{ee} < 30 {\rm MeV}}$$

# $\gamma_{\text{direct}}$ and $\pi^0$ Spectra in p+p at $\sqrt{s}$ = 200 GeV: Agreement with NLO perturbative QCD





Agreement with pQCD: Prerequisite for jet quenching calculations in A+A

## Direct Photon Production in p+p: Data/Theory for various $\sqrt{s}$



- NLO pQCD describes direct photon data from √s = 20 - 2000 GeV
- Only exception:Data from E706

Aurenche et al., Phys. Rev. D 73 (2006), 094007

# Direct Photon Yields in Au+Au: (Approximate) $N_{coll}$ Scaling



N<sub>coll</sub> = number of inelastic nucleon-nucleon collisions



- QCD factorization implies
   N<sub>coll</sub> scaling of hard
   scattering yields
- Indeed observed for direct γ

# $\gamma_{\text{direct}}$ and $\pi^0$ 's in Au+Au at $\sqrt{s_{\text{NN}}}$ = 200 GeV: Evidence for Parton Energy Loss



$$R_{AA} = \frac{\left. \frac{\mathrm{d}N \, / \, \mathrm{d}p_{T} \, \right|_{\mathrm{A+A}}}{\left< N_{\mathrm{coll}} \right> \times \mathrm{d}N \, / \, \mathrm{d}p_{T} \, \right|_{\mathrm{p+p}}}$$
No energy loss for  $\gamma$ 's
Energy loss for quark and gluon jets

π0's and η's are suppressed, direct photons are not: Evidence for parton energy loss (jet quenching)

#### Direct $\gamma R_{\Delta\Delta} < 1$ for $p_T > 14$ GeV/c?





- R<sub>AA</sub> < 1 expected due to isospin effect (difference between p+p, p+n, n+n)
- Further contribution:
   Suppression of bremsstrahlung and fragmentation photons due to parton energy loss
- Experimental issue:
   Correction for the merging of the two showers from π<sup>0</sup> decay photons needs to be double-checked
   (→ wait for final data)

### γ-Triggered Away-Side Correlations: Basic Idea





p+p:
 (Effective) jet fragmentation
 functions can be extracted from
 γ-hadron azimuthal correlations
 (modulo initial k<sub>T</sub> effect)

- A+A:
   Modification of fragmentation function provides information on parton energy loss
- Variables:

$$z_{T} = \frac{p_{T}^{h}}{p_{T}^{\gamma}}$$

$$D(z_{T}) = \frac{1}{N_{\text{trig}}} \frac{dN(z_{T})}{dz_{T}}$$

Wang, Huang, Phys.Rev.C55:3047-3061,1997

## γ-Triggered Away-side Correlations: Jet Fragmentation Function in p+p and Au+Au



Fit effective FF's with

$$\frac{\mathrm{d}N}{\mathrm{d}z_T} = Ne^{-bz_T}$$

- p+p:  $b = 6.89 \pm 0.64$
- Au+Au:  $b = 9.49 \pm 1.37$
- Difference reflects influence of the medium

#### **Direct Photons via Internal Conversion**

- Motivation:
   Measure where thermal photons are expected and calorimetric measurements are difficult
- Internal conversion
  - Any source of real photons also emits virtual photons
  - Well known example:  $\pi^0$  Dalitz decay  $\gamma^*$   $e^-$
  - Rate and  $m_{ee}$  distribution calculable in QED (Kroll-Wada formula)
- Hadron decays: m<sub>ee</sub> < M<sub>hadron</sub>
- Essentially not such limit for point-like processes

Improve signal-to-background ratio by measuring  $e^+e^-$  pairs with  $m_{ee} > \sim M_{pion}$ 



#### Kroll-Wada Formula

Number of virtual photons per real photon (in a given  $\Delta \eta \ \Delta \phi \ \Delta p_{\mathsf{T}}$  interval):

$$\frac{1}{N_{\gamma}} \frac{\mathrm{d}N_{ee}}{\mathrm{d}m_{ee}} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right)} S$$

Hadron decay:

$$S = |F(m_{ee}^2)|^2 (1 - \frac{m_{ee}^2}{M_h^2})^3$$
 form factor



Point-like 
$$S \approx 1$$
 process:  $(\text{for } p_{\text{T}}^{ee} \gg m_{ee})$ 

**About 0.001 virtual photons** with  $m_{ee} > M_{pion}$  for every real photon

 $\rightarrow$  Avoid the  $\pi^0$  background at the expense of a factor 1000 in statistics

## **Extraction of the Direct Photon Signal: Two-Component Fit**



- Interpret deviation from hadronic cocktail (π, η, ω, η', φ) as signal from virtual direct photons
- Extract fraction r with two-component fit

$$r = \left. \frac{\gamma_{\text{direct}}^*}{\gamma_{\text{inclusive}}^*} \right|_{\text{mee} < 30 \, \text{MeV}}$$

 Fit yields good χ²/NDF (13.8 / 10)

### **Direct Photon Fraction** in p+p and Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$



PHENIX, arXiv:0804.4168v1 [nucl-ex]

- Lowest  $p_T$  ever measured in p+p
- Comparison to NLO pQCD (colored lines)
- p+p: Agreement
- Au+Au: Strong enhancement at low  $p_{T}$

## Low $p_T$ Direct Photon Spectra in p+p and Au+Au at $\sqrt{s_{NN}}$ = 200 GeV



p+p: spectrum described with

$$f_{p+p}(p_T) = A \cdot (1 + p_T^2 / b)^{-n}$$

Au+Au:

Enhancement above p+p described by an exponential (as expected for a thermal source)

$$f_{Au+Au}(p_T) = \frac{N_{\text{coll}}}{\sigma_{\text{NN}}^{\text{inel}}} \times f_{p+p}(p_T)$$
$$+B \times e^{-\frac{p_T}{T}}$$

Slope parameter (0-20%):

$$T = (221 \pm 23 \pm 18) \text{ MeV}$$

Expected to be a lower limit for the initial temperature!

PHENIX, arXiv:0804.4168v1 [nucl-ex]

#### **Model Comparison**



C. Gale, arXiv:0904.2184v1

Similar conclusions for essentially all hydro models on the market

- Model space-time evolution with ideal hydro
- This calculation (arXiv:0904.2184v1)
  - Hydro starts early
     (τ<sub>0</sub> = 0.2 fm/c) to take
     pre-equilibrium photons
     into account
  - Thermal equilibrium expected at τ<sub>0</sub> = 0.6 fm/c (T<sub>initial</sub> = 340 MeV)
  - Photons from jet-plasma interaction needed

 $T_{\text{initial}} > T_{\text{c}} \approx 170 - 190 \text{ MeV}$   $\rightarrow$  evidence for the formation of a quarkgluon plasma

### PHENIX Low $p_T$ Direct Photon Data: Comparison with Different Hydro Models



Initial temperature above  $T_c$  in all models

#### **Conclusions**

- High  $p_T \pi^0$ 's and direct photons:  $\pi^0$ 's are suppressed whereas direct photons follow scaling expected for hard processes:
  - $\pi^0$  suppression is a final state effect (most likely jet quenching)
- γ-triggered away-side correlations:
   Will allow to quantify parton energy loss via modified fragmentation functions
- Low  $p_T$  direct photons: Enhanced production of direct photons with  $1 < p_T < 4$  GeV/c in Au+Au w.r.t. p+p provides evidence for thermal photons as expected from a quark-gluon plasma

**Extra Slides** 

### γ-Triggered Away-side Correlations: Results

$$I_{AA} = D_{AA}(z_T) / D_{pp}(z_T)$$



- Different z<sub>T</sub> regions probe different regions of the fireball (arXiv:0902.4000v1)
- Agreement with NLO pQCD + parton energy loss: Indication that energy loss in different regions of the fireball is understood

**NLO** calculation:

Zhang et al. (ZOWW), arXiv:0902.4000v1

### Direct Photon Spectra in p+p vs. NLO pQCD



Agreement with NLO pQCD at  $\sqrt{s} = 200 \text{ GeV}$